12,126 research outputs found

    Affine crystal structure on rigged configurations of type D_n^(1)

    Full text link
    Extending the work arXiv:math/0508107, we introduce the affine crystal action on rigged configurations which is isomorphic to the Kirillov-Reshetikhin crystal B^{r,s} of type D_n^(1) for any r,s. We also introduce a representation of B^{r,s} (r not equal to n-1,n) in terms of tableaux of rectangular shape r x s, which we coin Kirillov-Reshetikhin tableaux (using a non-trivial analogue of the type A column splitting procedure) to construct a bijection between elements of a tensor product of Kirillov-Reshetikhin crystals and rigged configurations.Comment: 26 pages, 3 figures. (v3) corrections in the proof reading. (v2) 26 pages; examples added; introduction revised; final version. (v1) 24 page

    Microscopic theory for the glass transition in a system without static correlations

    Full text link
    We study the orientational dynamics of infinitely thin hard rods of length L, with the centers-of-mass fixed on a simple cubic lattice with lattice constant a.We approximate the influence of the surrounding rods onto dynamics of a pair of rods by introducing an effective rotational diffusion constant D(l),l=L/a. We get D(l) ~ [1-v(l)], where v(l) is given through an integral of a time-dependent torque-torque correlator of an isolated pair of rods. A glass transition occurs at l_c, if v(l_c)=1. We present a variational and a numerically exact evaluation of v(l).Close to l_c the diffusion constant decreases as D(l) ~ (l_c-l)^\gamma, with \gamma=1. Our approach predicts a glass transition in the absence of any static correlations, in contrast to present form of mode coupling theory.Comment: 6 pages, 3 figure

    Solid-solid phase transition in hard ellipsoids

    Get PDF
    We present a computer simulation study of the crystalline phases of hard ellipsoids of revolution. A previous study [Phys. Rev. E, \textbf{75}, 020402 (2007)] showed that for aspect ratios a/b≥3a/b\ge 3 the previously suggested stretched-fcc phase [Mol. Phys., \textbf{55}, 1171 (1985)] is unstable with respect to a simple monoclinic phase with two ellipsoids of different orientations per unit cell (SM2). In order to study the stability of these crystalline phases at different aspect ratios and as a function of density we have calculated their free energies by thermodynamic integration. The integration path was sampled by an expanded ensemble method in which the weights were adjusted by the Wang-Landau algorithm. We show that for aspect ratios a/b≥2.0a/b\ge 2.0 the SM2 structure is more stable than the stretched-fcc structure for all densities above solid-nematic coexistence. Between a/b=1.55a/b=1.55 and a/b=2.0a/b=2.0 our calculations reveal a solid-solid phase transition

    Studies of superconductivity and structure for CaC6 to pressures above 15 GPa

    Full text link
    The dependence of the superconducting transition temperature Tc of CaC6 has been determined as a function of hydrostatic pressure in both helium-loaded gas and diamond-anvil cells to 0.6 and 32 GPa, respectively. Following an initial increase at the rate +0.39(1) K/GPa, Tc drops abruptly from 15 K to 4 K at 10 GPa. Synchrotron x-ray measurements to 15 GPa point to a structural transition near 10 GPa from a rhombohedral to a higher symmetry phase

    Percolation in suspensions of polydisperse hard rods : quasi-universality and finite-size effects

    Get PDF
    We present a study of connectivity percolation in suspensions of hard spherocylinders by means of Monte Carlo simulation and connectedness percolation theory. We focus attention on polydispersity in the length, the diameter and the connectedness criterion, and invoke bimodal, Gaussian and Weibull distributions for these. The main finding from our simulations is that the percolation threshold shows quasi universal behaviour, i.e., to a good approximation it depends only on certain cumulants of the full size and connectivity distribution. Our connectedness percolation theory hinges on a Lee-Parsons type of closure recently put forward that improves upon the often-used second virial approximation [ArXiv e-prints, May 2015, 1505.07660]. The theory predicts exact universality. Theory and simulation agree quantitatively for aspect ratios in excess of 20, if we include the connectivity range in our definition of the aspect ratio of the particles. We further discuss the mechanism of cluster growth that, remarkably, differs between systems that are polydisperse in length and in width, and exhibits non-universal aspects.Comment: 7 figure

    Saddle index properties, singular topology, and its relation to thermodynamical singularities for a phi^4 mean field model

    Full text link
    We investigate the potential energy surface of a phi^4 model with infinite range interactions. All stationary points can be uniquely characterized by three real numbers $\alpha_+, alpha_0, alpha_- with alpha_+ + alpha_0 + alpha_- = 1, provided that the interaction strength mu is smaller than a critical value. The saddle index n_s is equal to alpha_0 and its distribution function has a maximum at n_s^max = 1/3. The density p(e) of stationary points with energy per particle e, as well as the Euler characteristic chi(e), are singular at a critical energy e_c(mu), if the external field H is zero. However, e_c(mu) \neq upsilon_c(mu), where upsilon_c(mu) is the mean potential energy per particle at the thermodynamic phase transition point T_c. This proves that previous claims that the topological and thermodynamic transition points coincide is not valid, in general. Both types of singularities disappear for H \neq 0. The average saddle index bar{n}_s as function of e decreases monotonically with e and vanishes at the ground state energy, only. In contrast, the saddle index n_s as function of the average energy bar{e}(n_s) is given by n_s(bar{e}) = 1+4bar{e} (for H=0) that vanishes at bar{e} = -1/4 > upsilon_0, the ground state energy.Comment: 9 PR pages, 6 figure

    The biHecke monoid of a finite Coxeter group

    Full text link
    The usual combinatorial model for the 0-Hecke algebra of the symmetric group is to consider the algebra (or monoid) generated by the bubble sort operators. This construction generalizes to any finite Coxeter group W. The authors previously introduced the Hecke group algebra, constructed as the algebra generated simultaneously by the bubble sort and antisort operators, and described its representation theory. In this paper, we consider instead the monoid generated by these operators. We prove that it has |W| simple and projective modules. In order to construct a combinatorial model for the simple modules, we introduce for each w in W a combinatorial module whose support is the interval [1,w] in right weak order. This module yields an algebra, whose representation theory generalizes that of the Hecke group algebra. This involves the introduction of a w-analogue of the combinatorics of descents of W and a generalization to finite Coxeter groups of blocks of permutation matrices.Comment: 12 pages, 1 figure, submitted to FPSAC'1

    Crystallization in Glassy Suspensions of Hard Ellipsoids

    Get PDF
    We have carried out computer simulations of overcompressed suspensions of hard monodisperse ellipsoids and observed their crystallization dynamics. The system was compressed very rapidly in order to reach the regime of slow, glass-like dynamics. We find that, although particle dynamics become sub-diffusive and the intermediate scattering function clearly develops a shoulder, crystallization proceeds via the usual scenario: nucleation and growth for small supersaturations, spinodal decomposition for large supersaturations. In particular, we compared the mobility of the particles in the regions where crystallization set in with the mobility in the rest of the system. We did not find any signature in the dynamics of the melt that pointed towards the imminent crystallization events
    • …
    corecore